# GEOLOGICKÝ PROFIL ÚDOLÍ ŘÍMOVSKÉ PŘEHRADY

Vojtěch Vlček



Práce SOČ Geologie a geografie Arcibiskupské gymnázium Korunní 2, Praha 2 8. ročník 2006 Prohlašuji tímto, že jsem soutěžní práci vypracoval samostatně pod vedením RNDr. Dobroslava Matějky a uvedl jsem v seznamu literatury veškerou použitou literaturu a další informační zdroje včetně internetu.

V Praze dne 21.3.2006

Vojtěch Vlček

# autor: Vojtěch Vlček, Arcibiskupské gymnázium odborný konzultant: RNDr. Dobroslav Matějka, Ústav mineralogie, geochemie a nerostných zdrojů PřF UK

# <u>Obsah</u>

| 1 | Úvod            |                     | 3  |
|---|-----------------|---------------------|----|
| 2 | Metodika        |                     | 4  |
| 3 | Geologické por  | něry                |    |
|   | 3.1             | Kaplická jednotka   | 5  |
|   | 3.2             | Moldanubický pluton | 7  |
| 4 | Závěr a diskuze |                     | 9  |
| 5 | Poděkování      |                     | 9  |
| 6 | Literatura      |                     | 10 |
| 7 | Přílohy         |                     | 12 |
| 8 | Fotografie      |                     | 15 |

## <u>Úvod</u>

Danému území se autor intenzivně věnuje od roku 2001, přičemž nejprve oblast zmapoval a posléze se věnoval laboratornímu výzkumu geologických vzorků. Přesto, že je oblast z geologického (resp. petrologického) hlediska často opomíjena a spojována víceméně pouze s výskytem vltavínů, snaží se autor poukázat na některé z jejích specifik, a to jak z hlediska petrologie (chemismus minerálů, mineralogické asociace, srovnání dat s jinými autory), tak mineralogie (výskyt minerálů pararul).

Popisovaná oblast se rozkládá mezi obcemi Velešín a Pořešín a sleduje tak tok řeky Malše. Území spadající do podhůří Novohradských hor je zaneseno na základních geologických mapách 1 : 25 000 Trhové Sviny (32-242) a Velešín (32-241). Setkáváme se zde v podstatě se dvěma většími geologickými jednotkami – moldanubickým plutonem a motonní kaplickou jednotkou. Zprávy o geologickém mapování oblasti publikoval Čech (1956, 1957). Místy vystupují ještě terciérní sedimenty (například u kóty Chlumská hora), které jsou vlatavínonosné, a říční sedimenty, které popisuje například Chábera (1965). Tektonické poruchy jsou doprovázeny žilným křemenem a mylonitizací, která se nejvíce projevuje jižněji u Kaplice, kde mylonitové pásmo dosahuje až stovek metrů. Západně se pak vyskytují migmatitizované ekvivalenty pararul.

## <u>Metodika</u>

Oblast toku Malše od Pořešína k Velešínu byla zmapována spolu s jejím okolím. Jako základ sloužily základní geologické mapy 1 : 25 000 list 32-242 Trhové Sviny (ÚÚG 1985, redaktor S. Vrána) a list 32-241 Velešín (ÚÚG 1982). Horniny byly studovány mikroskopicky (Optická laboratoř ÚGMNZ UK) a pomocí elektronové mikrosondy Cam Scan S4 na Ústavu mineralogie, geochemie a nerostných zdrojů PřF UK. Bylo užito urychlovací napětí 20 kV, při 62 eV a měření probíhalo 150 vteřin (není-li uvedeno jinak). Použité fotografie jsou autorské.

### Geologické poměry

#### Kaplická jednotka

Velkou část území tvoří jednotvárná kaplická jednotka tvořená:

- a) muskovit-biotitickou pararulou
- b) muskovit-biotitickou pararulou s polohami kvarcitické ruly a kvarcitu
- c) sillimanit-biotitickou pararulou
- d) kvarcitovými čočkami

Celá jednotka má průběh SV-JZ a na daném území se stýká s moldanubickým plutonem zastoupeným granitem einsgarnského typu. Probíhá zde i dobře patrný kaplický zlom.

První dva typy hornin poskytují dvě variety (Holásek et al. 1982 je popisuje pouze u muskovit biotitické pararuly), které se liší zrnitostí. Kompaktní vývin (s nižším obsahem slíd) je znatelně usměrněný a má lineárně paralelní texturu. Druhá varieta má plástevnatou texturu, díky níž byla dříve označována jako svorová rula (Vrána et al. 1984). Obě variety mají granolepidoblastickou strukturu, objevují se i společně a na jednom výchozu se mohou cyklicky opakovat. V mikroskopickém pozorování se horniny z hlediska mineralogického složení nemění.

Vzorky hornin byly odebrány z výchozů v blízkosti řeky. Vzhledem k vysokému obsahu nestabilních složek jsou variety s plástevnatou texturou značně erodovány a sběr vhodných vzorků je v některých případech nemožný.

Hlavními minerály metamorfitů jsou:

- a) křemen + plagioklas + K-živec + biotit + muskovit
- b) křemen + plagioklas + K-živec + biotit + muskovit  $\pm$  granát  $\pm$  turmalín
- c) křemen + plagioklas + K-živec + biotit + sillimanit  $\pm$  granát  $\pm$  turmalín
- *d)*  $k \check{r} emen \pm biotit \pm muskovit \pm plagioklas$

Akcesoricky se u všech typů pararul objevují *sillimanit* (u sillimanit biotitické pararuly má stálé zastoupení), *zirkon, pyrit, apatit, rutil, monazit, ilmenit* (se zvýšeným obsahem Mn). Sekundárně se vytváří *chlorit, sericit* a *hematit* (vyskytují se i jeho pseudomorfózy po turmalínu). Na puklinách a v dutinách se vyskytují krystalky křemene či vzácně povlaky epidotu. Při polním sběru je též možné najít andalusit či skoryl; obojí popisuje již Pavlíček (1978), ale pouze v okolí Něchova, Nesměně a Trhových Svin, tedy východně od

popisovaného území, avšak stejné minerály se vyskytují i v okolí kaplického zlomu. Mezi obcemi Svatý Jan n. Malší a Ločenice je možné nalézt pararulu obsahující grafit.

Muskovit biotitická pararula i muskovit-biotitická pararula s polohami kvarcitické ruly a kvarcitu často obsahuje sekreční čočky křemene mocností od několika cm až po1,5 - 2 m. Vrána a Bártek (2005) popisuje vznik sekrečních čoček rovnicemi:

- (1) granát + K-živec +  $H_2O$  = biotit + sillimanit + 2 křemen
- (2) K-živec + sillimanit +  $H_2O$  = muskovit + křemen

K první z rovnic dodává, že vznik křemenných sekrečních čoček na úkor granátu v hornině dokazuje i fakt, že se granát vyskytuje pouze v menším počtu vzorků, a roztoky přicházeli do metamorfitů z tělesa eisgarnského granitu. V horninách z okolí Římovské přehrady se však granáty vyskytují zhruba ve čtvrtině případů a nejhojnější jsou pak vzorky, které pocházejí z blízkosti sekrečních čoček větších mocností. Lze proto odvodit, že množství granátu v hornině je úměrné sekreci křemene. Granáty z těchto vzorků nemají reakční lemy, ale jeví jistou zonalitu (úbytek Mn při okrajích zrn), jsou nekompaktní a obsahují četné inkluze, svým chemismem odpovídají almandinu. Jejich složení kontrastuje s granáty bohatými na Ca, které Vrána a Bártek (2005) popisuje z oblastí kde došlo k retrográdní přeměně na Ca bohaté ruly (tabulka 2).

Zdrojovými materiály muskovit biotitických pararul byly u břidličnaté variety břidlice a prachovce a u kompaktní variety droby (Holásek et al. 1982). U kvarcitické ruly pak arkózy a u kvarcitů arkózové pískovce až křemenné pískovce.

Zatímco se v západní části oblasti objevuje muskovit-biotitická pararula s polohami kvarcitické ruly a kvarcitu, východně od kaplického zlomu sledujeme již jen výskyt muskovit-biotitických pararul a ojediněle sillimanit-biotitickou pararulu (jihovýchodní část u obce Malče), z kterých retrográdní metamorfózou vznikaly muskovit-biotitické pararuly, což můžeme v tomto případě pozorovat i na diskordantní foliaci vůči okolní muskovit-biotitické pararule (Vrána, Bártek 2005). Kvarcit se vyskytuje v celé oblasti v podobě čoček menších rozměrů, největší těleso tvoří vrch s obcí Svatý Jan n. Malší, které by mělo obsahovat směrem na východ pyroxeny (Čech 1957).

#### Moldanubický pluton

Horniny moldanubického plutonu se vyskytují na jihovýchodě popisované oblasti a tvoří nejvyšší místní kótu Chlumská hora (656 m n. m.). Moldanubický pluton je zde tvořen :

- a) muskovit biotitickým granitem einsgarnského typu
- b) žilným leukogranitem

Hornina má rovnoměrně zrnitou granitickou strukturu s hypidiomorfně omezenými zrny. Textura je většinou kompaktní, místy se však objevuje i mírné usměrnění. Granit je otevřen několika lomy na Chlumské hoře a výchozy v jižní části území. Vzorky hornin eisgarnského granitu jeví při mikroskopickém pozorování odlišnosti v mineralogickém složení. Základní hmota je tvořena minerály:

#### křemen + plagioklas + K-živec + biotit + muskovit

V případě vzorků z Chlumské hory byl granit obohacen o akcesorie, které ve vzorcích z jižní části chybí. Jsou to: *apatit, zirkon, sillimanit, rutil, monazit, titanit*. U obou typů se pak vyskytuje *pyrit* a sekundárně *chlorit*. Na puklinách se často objevují krystalky křemene do velikosti max. 0,5 cm

Finger et al. (1997) zařazuje eisgarnský granit spolu s weinsberským do jedné z hlavních skupin variských granitoidů a datuje ho na  $327 \pm 4$  Ma. Datování weinsberské žuly podává obdobné výsledky, o čemž referují i Gerdes et al. (1998).

Hornina se jižněji stýká s granitem typu weinsberg, pod který pravděpodobně zapadá jak uvádí již Stodola (1951). Oby dva typy jsou sice zhruba stejně staré, avšak u weinsberského granitu vycházejí některá měření o málo mladší, například Scharbertová (1998) uvádí pro Eisgarn  $330 \pm 6$  Ma a pro Weinsberg 328 Ma.

Žilný leukogranit se vyskytuje na několika místech v popisované oblasti v podobě menších těles, nepřesahujících mocnost 2 m. Hornina je rovnoměrně zrnitá a některé minerály bývají idiomorfně omezené (například slídy nebo živce). Hornina má jednotvárné složení – *křemen* + *K-živec* + *muskovit* + *plagioklas*  $\pm$  *biotit*. Velikost zrn se pohybuje okolo 0,5cm, výjimečně 1,5 cm, přičemž slídy často vytvářejí vějířkovité agregáty. Směrem ke styku s okolní horninou se zrna na některých výchozech zmenšují až k jemnozrnné varietě, mineralogicky se však neliší. Leukokratní žuly jsou popisovány také z oblastí kolem obce Něchov (Vrána et al. 1984), t.j. východně od popisovaného území, a jižně u Soběnova (Vrána et al. 1988), avšak nejsou v terénu odkryty. Vyskytují se buď v granitu, nebo (v případě výskytu u Něchova a na popisovaném území) v pararule v oblasti blízké jejímu kontaktu s granitem. V jednom z případů se však vyskytuje jako enkláva v muskovit biotitické pararule s polohami kvarcitické ruly a kvarcitu v okolí Velešína, je proto otázkou zda jsou leukogranity těsně vázány na žulu. Žíly u Soběnova navíc dokládají i výskyt v granitu weinsberského typu.

Vzhledem k tomu, že nelze odebrat vzorky na dvou dalších výše zmíněných místech, můžeme horniny srovnávat pouze na základě jejich popisů ve vysvětlivkách k základním geologickým mapám (Vrána et al. 1984, 1988), dle kterých se dá soudit na jejich společný původ. Všechny žíly mají navíc průběh VSV-ZJZ.

Finger et al. (1997) ve svém členění variských granitoidů podskupinu leukogranitů, které jsou mladší (320 – 310 Ma) než ostatní granity. Představuje je však jako jemnozrnné. Naproti tomu Scharbertová (1998) popisuje dva typy leukokratních žul; jemnozrnné a hrubozrnné, zhruba stejného stáří (cca 320 Ma). Tyto žíly jsou podle ní "diferenciačním produktem eisgarnského granitu" a pokud se objevují v sepětí s žulou typu Weinsberg mají rozdílný chemismus. Přestože jsou u obou autorů tyto horniny popisovány jako žíly prostupující ostatní typy granitů, je více než pravděpodobné, že se k nim dají přiřadit i leoukokratní žuly z okolí Římovské přehrady.

#### Závěr a diskuze

V okolí Římovské přehrady vystupují horniny kaplické jednotky a moldanubického plutonu. Z kaplické jednotky to je především muskovit biotitická pararula s polohami kvarcitické ruly a kvarcitu a muskovit biotitická pararula. Obě horniny obsahují četné akcesorie a sekundárními reakcemi docházelo k vylučování křemene na úkor jiných minerálů, hlavně granátů. Ty se právě nejhojněji vyskytují v okolí těchto sekrečních čoček křemene, což ukazuje na úměru mezi vylučováním křemene a množstvím granátu v hornině. Granáty pararul jsou almandinového složení a projevuje se u nich mírná zonalita. V pararulách se vyskytují pecky krystalovaného andalusitu, skorylu, křemene a povlaky grafitu či epidotu.

V moldanubickém plutonu můžeme na daném území pozorovat granit eisgarnského typu, který má dvě variace – s akcesoriemi nebo bez, oba typy však obsahují pyrit a novotvořený chlorit. Na puklinách se vyskytují krystalky křemene. Dále se zde objevuje žilná leukokratní žula, jež má stálé mineralogické složení a lze ji přiřadit k mladším leukogranitům (dle Finger et al. 1997).

#### **Poděkování**

Za obětavou pomoc a cenné rady během celé práce bych chtěl vyslovit poděkování RNDr. Dobroslavu Matějkovi z Přírodovědecké fakulty Univerzity Karlovy v Praze.

#### <u>Literatura</u>

- Čech V. Zpráva o geologickém mapování krystalinika na listu Č. Budějovice generální mapy, Zprávy o geologických výzkumech v roce 1955, Praha 1956
- Čech V. Zpráva o přehledném geologickém mapování na listech České Budějovice (XXVII) a Strakonice (XXVI) generální mapy, Zprávy o geologických výzkumech v roce 1956, Praha 1957
- Finger F. et al. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations, Mineralogy and Petrology 1997, vol 61, 67 96
- Gerdes A et al. Late orogenic magmatism in the southern Bohemian Massif geochemical and isotopic constraints on possible sources and magma evolution, Acta Universitatis Carolinae 1998, 42 (1), 41 - 45
- Holásek O. et al Vysvětlivky k základní geologické mapě ČSSR 1: 25 000, list Velešín (32-241), ÚÚG Praha 1982
- Chábera S. Příspěvek k poznání teras Vltavy a Malše v Českobudějovické pánvi, Sborník Jihočeského muzea v Českých Budějovicích, V 1965, *3 19*
- Pavlíček V. Výskyty nerostů v okolí Trhových Svin, Sborník Jihočeského muzea v Českých Budějovicích, 18,1978, 63 70
- Scharbert S. Some geochronological data from the South Bohemian Pluton in Austria: a critical review, Acta Universitatis Carolinae 1998, 42 (1), *114 118*
- Stodola L. Poznámky ke geologii Kaplicka, Zprávy o geologických výzkumech v roce 1951, Praha 1952
- Tuček K.– Naleziště českých nerostů a jejich literatura 1951 1965, Academia Praha 1970

- Vrána S. et al. Vysvětlivky k základní geologické mapě ČSSR 1: 25 000, list Trhové Sviny (32-242), ÚÚG Praha 1984
  - Vysvětlivky k základní geologické mapě ČSSR 1:25 000, list Benešov nad Černou (32-244), ÚÚG Praha 1988
- Vrána S., Bártek J. Retrograde metamorphism in a regional shear zone and related chemical changes: The Kaplice Unit of muscovite-biotite gneisses in the Moldanubian Zone of southern Bohemia, Czech Republic, Journal of the Czech Geological Society, 2005, 50/ 1-2, 43 - 57

#### <u>Přílohy</u>

| 1.    | Ζ.                                                                        | 3.                                                    | 4.                                                    | 5.                                                    | 6.                                                    | 7.                                                    |
|-------|---------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 65,11 | 37,18                                                                     | 46,61                                                 | -                                                     | 64,63                                                 | 62,78                                                 | 23,92                                                 |
| 21,79 | 19,08                                                                     | 36,84                                                 | -                                                     | 18,86                                                 | 23,03                                                 | 22,37                                                 |
| -     | 20,68                                                                     | 1,09                                                  | 36,35                                                 | 0,99                                                  | -                                                     | 28,02                                                 |
| 10,27 | -                                                                         | 0,60                                                  | -                                                     | -                                                     | 9,03                                                  | -                                                     |
| 0,03  | 9,85                                                                      | 10,83                                                 | -                                                     | 15,51                                                 | -                                                     | -                                                     |
| -     | 0,56                                                                      | -                                                     | 11,07                                                 | -                                                     | -                                                     | 0,71                                                  |
| 1,93  | -                                                                         | -                                                     | -                                                     | -                                                     | 3,91                                                  | 0,00                                                  |
| -     | 9,16                                                                      | 0,46                                                  | -                                                     | -                                                     | -                                                     | 11,48                                                 |
| -     | 2,54                                                                      | 0,46                                                  | 54,13                                                 | -                                                     | -                                                     | -                                                     |
| -     | -                                                                         | -                                                     | -                                                     | 0,62                                                  | -                                                     | -                                                     |
| 99,14 | 99,03                                                                     | 96,89                                                 | 101,55                                                | 100,61                                                | 98,76                                                 | 86,50                                                 |
|       | 65,11<br>21,79<br>10,27<br>0,03<br>-<br>1,93<br>-<br>-<br>-<br>-<br>99,14 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Tabulka 1. Analýzy minerálů muskovit-biotitických pararul

z muskovit-biotitické pararuly, 4. ilmenit z muskovit-biotitické pararuly, 5. K-živec z muskovit-biotitické pararuly s polohami kvarcitické ruly a kvarcitu, 6. plagioklas z muskovit-biotitické pararuly s polohami kvarcitické ruly a kvarcitu, 7. chlorit z muskovit-biotitické pararuly s polohami kvarcitické ruly a kvarcitu

#### Obrázek 1. Granáty muskovit-biotitických pararul



Hodnoty jednotlivých měření viz tabulka 2.

| MgO2,422,202,002,102,481,861,37Al2O320,7819,2421,4820,7020,9720,7721,73SiO236,6934,5138,4136,5036,5937,6438,81CaO1.862.055.382.001.962.539.66 | 0.64  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Al2O320,7819,2421,4820,7020,9720,7721,73SiO236,6934,5138,4136,5036,5937,6438,81CaO1.862.055.382.001.962.539.66                                | 0,04  |
| SiO236,6934,5138,4136,5036,5937,6438,81CaO1.862.055.382.001.962.539.66                                                                        | 22,39 |
| CaO 1.86 2.05 5.38 2.00 1.96 2.53 9.66                                                                                                        | 37,72 |
|                                                                                                                                               | 8,1   |
| MnO 7,25 6,48 5,04 8,43 8,55 8,57 7,40                                                                                                        | 13,04 |
| FeO tot 30,29 30,75 30,45 28,38 29,26 29,52 21,21                                                                                             | 17,46 |
|                                                                                                                                               |       |
| suma 99,28 95,23 102,75 98,12 99,82 100,90 100,18                                                                                             | 99,35 |

Tabulka 2. Granáty muskovit-biotitických pararul

o = okraj zrna; s = střed zrna; v = granáty bohaté na Ca popisované Vránou a Bártkem (2005)

|                   | 1.    | 2.    | 3.    | 4.    | 5.    | 6.    |
|-------------------|-------|-------|-------|-------|-------|-------|
| SiO <sub>2</sub>  | 67,58 | 48,08 | 30,22 | 31,92 | 1,28  | -     |
| Na <sub>2</sub> O | 11,33 | -     | 0,92  | -     | -     | 0,98  |
| $Al_2O_3$         | 19,78 | 33,59 | 19,70 | 8,23  | 0,81  | -     |
| MgO               | -     | 1,40  | 8,34  | -     | 0,22  | -     |
| FeO tot           | -     | 2,16  | 25,95 | -     | 1,08  | -     |
| K <sub>2</sub> O  | -     | 10,89 | 0,59  | -     | -     | -     |
| CaO               | 0,66  | -     | 0,48  | 27,29 | 0,34  | 52,24 |
| MnO               | -     | -     | 0,68  | -     | 0,09  | 0,76  |
| TiO <sub>2</sub>  | -     | -     | -     | 27,27 | 85,17 | -     |
| $P_2O_5$          | -     | -     | -     | -     | -     | 42,91 |
|                   |       |       |       |       |       |       |
| suma              | 99,36 | 96,13 | 86,88 | 94,71 | 88,99 | 96,89 |

Tabulka 3. Analýzy minerálů granitů typu eisgarn

1. plagioklas, 2. muskovit, 3. chlorit, 4. titanit, 5. rutil, 6. apatit







terciérní sedimenty

eisgarnský granit

muskovit biotitická pararula muskovit biotitická pararula s polohami kvarcitické ruly a kvarcitu 



sillimanit biotitická pararula

- kvarcit a kvarcitická rula
- Si žilný křemen
- d biotitický dioritový porfyrit

# <u>Fotografie</u>



Kompaktní vývin muskovit-biotitických pararul, detail horniny



Břidličnatý vývin muskovit-biotitických pararul, detail horniny



Silimanit-biotitická pararula, detail horniny



Granit eisgarnského typu, detail horniny



Výskyt žilného leukogranitu ve výchozu muskovit-biotitické pararuly s polohami kvarcitické ruly a kvarcitu, výchoz 1,6 km vsv. Od obce Malče na levém břehu řeky



Jemnozrnný vývin žilného leokugranitu, detail horniny



Hrubozrnný vývin žilného leukogranitu, detail horniny



Krystalky křemene v muskovit-biotitické pararule, skutečná velikost $0{,}5-1~{\rm cm}$ 



Pecka andalusitu s krystalky minerálu (skutečná velikost cca 0,5 cm)



Pecka andalusitu s krastalem minerálu (skutečná velikost cca 0,5 cm)



Pseudomorfóza křemene po andalusitu (skutečná velikost > 0,5 cm)



Turmalínovec, detail (skutečná velikost 2 cm)



Muskovit-biotitická pararula s povlaky grafitu



Analyzovaný granát v muskovit-biotitické pararule s polohami kvarcitické ruly a kvarcitu, 100x zvětšeno, jeden nikol



Granát v muskovit-biotitické pararule s polohami kvarcitické ruly a kvarcitu, 100x zvětšeno, jeden nikol



Silimanit v silimanit-biotitické pararule, 100x zvětšeno, jeden nikol



Turmalín v muskovit-biotitické pararule s polohami kvarcitické ruly a kvarcitu, 100x zvětšeno, zkřížené nikoly



Zirkon v silimanit-biotitické pararule, 200x zvětšeno, jeden nikol



Sekundární chlorit vzniklý z biotitu v kvarcitu, 100x zvětšeno, zkřížené nikoly



Kumulace opakních minerálů v muskovit-biotitické pararule, 100x zvětšeno, zkřížené nikoly



Pseudomorfóza hematitu (pravděpodobně po pyritu), 100x zvětšeno, jeden nikol